
Creating Your Own MCP-Style 
Agentic System Right Now

MikeAmundsen
@mamund





Overview

● Agentic Essentials
● Discovery
● Composable Services
● Shared State
● Job Control
● Parting Thoughts



Agentic Essentials



The Rise of Agentic Systems
• What do we mean by “agentic”?

• Why is it popular now?

• What infrastructure is required?



Goal-Driven, Autonomy-Friendly 
Systems

• Agent: an app that pursues goals

• Agentic: acting as an autonomous agent

• Often mentioned for AI-driven tasks

• But not limited to LLM world



The Agent Moment Has Arrived
• LLMs unlocked new possibilities

• MCP (Message-Centric Protocol) makes APIs agent-friendly

• Tools like LangChain, CrewAI, AutoGen, MetaGPT are popular



Agentic ≠ Autonomous AI Magic

• Agentic systems rely on structure and constraints

• The agent is only as good as the environment it acts within

• Real-world systems must be predictable, safe, reversible



Three Pillars of Agentic Systems
• Composable Interfaces: clean, stable APIs with consistent 

affordances

• Shared State: memory across steps and services

• Service Discovery: agents need to find and understand what’s 
available



Let’s see an agent action …



My job-runner agent



My job-runner agent

● Take instructions from a jobFile
● Maintain state values between API calls
● Produce output for review



Todo JobFile



My job-runner memory

● The agent will need to know what data to deal with
● We can supply initial values via a state document



My job-runner



Resulting output



What did we just see?

● Define a job
● Set starting memory values
● Tell the agent to run the job
● Check results



What makes this possible?

● Job control gives us structure
● But the real power lies deeper
● Agentic systems depend on flexibility and coordination
● That’s where the Three Pillars come in





Three Pillars of Agentic Systems

● Discovery
○ Find capabilities at runtime

● Composable Services
○ Expose common interface

● Shared Memory
○ Act as “glue” across API calls



Discovery



Finding Capabilities

● Support “Find and Bind”
● Based on OPEN-DISCO
● Providers register a capability
● Consumers search for capabilities



Open DISCO

http://open-disco.org/



Providers Register



Providers Register

● Name
● URL
● Search tags
● Optional ping URL



Consumers Search



Consumers Search

● Pass tag(s)
● Select service from list

○ Via URL
● Optionally, check ping for status



Demo



Provider registers on startup



Consumer finds and binds



Discovery Solved

● Services register at startup
● Clients search the registry at runtime
● Matched searches results in “Find and Bind”
● Services unregister at shutdown

https://mamund.substack.com/p/from-discovery-to-execution



Three Pillars of Agentic Systems

● Discovery
○ Find capabilities at runtime

● Composable Services
○ Expose common interface

● Shared Memory
○ Act as “glue” across API calls



Composable Services



Why Composable?

● Agents need a stable interface 
○ Same for any capability

● Agents need consistency in input/output
○ Pass structured msgs, not data object

● Agents need repeatable and reversible actions



Three Universal Actions

● execute: perform the core operation
● repeat: idempotent re-run or state fetch
● revert: undo the last operation

These three affordances enable state-aware, reversible workflows



Three Universal Actions



Passing Structured Messages



Designing a Service Interface Wrapper



We an even wrap other APIs



Composable Services

● Three Universal Actions
○ execute, repeat, revert

● design.json for exposing interfaces
● Wrapping existing APIs for composability

○ open-weather API

Agents can now compose solutions w/ capabilities



Three Pillars of Agentic Systems

● Discovery
○ Find capabilities at runtime

● Composable Services
○ Expose common interface

● Shared Memory
○ Act as “glue” across API calls



Shared State



Shared State: The Missing Piece

● Composable, findable services are fine
● Agents that can execute operations are good
● But what do we do with the results of API calls?



Shared State: What We Need

● We need a shared space to store/retrieve data
● External to any agent or service
● Supports read/write during execution of workflows



Coordination Without Coupling

● Services remain stateless
○ No private internal session needed

● Agents and jobs can pass data without modifying APIs
○ The API doesn’t need to know

● Enables multi-step, multi-service, multi-agent coordination



A simple HTTP interface



State documents are the universal memory



Shared State Summary

● Shared state decouples logic from services
● The glue between autonomous steps
● Enables resilient, auditable, and agent-friendly jobs



Pulling it all together



The To-Do Agentic Loop

● Composable To-Do service
● Agentic job-runner to process data
● Discovery to match services to agents
● Shared state to handle memory



Full lifecycle of agentic operations



And So …



Agentic Systems

● Agents can be autonomous and still be deterministic
● You don’t need LLMs to start today
● You do need an agent platform

○ Discovery
○ Composability
○ Shared state



Three Pillars

● Discovery matches service capabilities w agents
● Composability makes enlisting services easy
● Shared state offers the glue

○ Multi-step
○ Multi-service
○ Multi-agent



Call to Action

● You have all the parts of an agentic platform already
● Start by building composable service interfaces
● Add discoverability
● Establish shared-state
● Finally, create job-runner agents



Additional Resources



Additional Resources



Additional Resources



"The best way to predict the 
future is to create it."

 
-- Alan Kay

Alan Kay: computer 
scientist, pioneer of 
object-oriented 
programming and the 
personal computer.



Creating Your Own MCP-Style 
Agentic System Right Now

MikeAmundsen
@mamund


