Creating Your Own MCP-Style
Agentic System Right Now

MikeAmundsen
@mamund

Mike Amundsen
mamund

Overview

Agentic Essentials
Discovery
Composable Services
Shared State

Job Control

Parting Thoughts

Agentic Essentials

%

The Rise of Agentic Systems

* What do we mean by “agentic”?
 Why is it popular now?
 What infrastructure is required?

Goal-Driven, Autonomy-Friendly
Systems

Agent: an app that pursues goals
Agentic: acting as an autonomous agent
Often mentioned for Al-driven tasks

But not limited to LLM world

The Agent Moment Has Arrived

e LLMs unlocked new possibilities
 MCP (Message-Centric Protocol) makes APIs agent-friendly
* Tools like LangChain, CrewAl, AutoGen, MetaGPT are popular

Agentic # Autonomous Al Magic

* Agentic systems rely on structure and constraints
* The agent is only as good as the environment it acts within

* Real-world systems must be predictable, safe, reversible

Three Pillars of Agentic Systems

 Composable Interfaces: clean, stable APIs with consistent
affordances

* Shared State: memory across steps and services

» Service Discovery: agents need to find and understand what'’s
available

Let's see an agent action ...

My job-runner agent

ca@mamund-ws:~/.../scripts$ job-runner --help
sage: job-runner [options] <jobFile>

Run a job-control document with optional state handling

Arguments:
jobFile Path to the job-control JSON file

Options:
--state <file> Initial shared state JSON file
--job-url <url> Job-control base URL
--state-url <url> Shared-state base URL
-—-emit [file] Write final shared state to file or stdout if no file is given
--keep Retain shared state after job ends
--overwrite overwrite existing shared state if ID already exists
--dry-run Print but don’t execute HTTP requests
--verbose Print debug information
-h, --help display help for command
ca@mamund-ws:~/.../scripts$ B

My job-runner agent

e Take instructions from a jobFile
e Maintain state values between API calls
e Produce output for review

Todo JobFile

"sharedstateURL": "http://localhost:4500/state/628bd965-fc5e-43cf-8e8d-bea39154dofd",
"name": "test-todo-service",
"description” : "A short script to exercise the TODO service",
"steps": [
{
L
"name": "delete-todo",
"description” : "to start w/ a clean slate, delete anything from the Tast run",
"enabled": true,
"tasks": [

{
L

"tag": "todo",
"serviceName" : "todo-service",
"enabled" : true,
"input": {
"command": "delete",
"resource": "todo",
"id": {"$fromstate" : "/todoData/id"}

"

'storeResultAt”: [
¥ g
1

"targetPath": "/state/todoDelete"

"name": "create-todo",
"enabled": true,
"tasks": [

F

"tag": "todo",
"serviceName": "todo-service",
"input: i

"command": "create",

My job-runner memory

e The agent will need to know what data to deal with
e \We can supply initial values via a state document

"id" : "628bd965-fc5e-43cf-8e8d-bea39154d0ofd"
"todoData" : {

"id"” : "job-test-002",

"title" : "From job-runner",

"done"” : false,

"redone” : true

My job-runner

#1 /bin/bash

run a job

job-runner todo-test.json \
--state todo-test-state.json \

--overwrite \
-—emit \
--keep | jq

I EOF

Resulting output

"todoData": {
"id": "job-test-002",
"title": "From job-runner",
"done": false,
"redone'": true

N
J

"state": {

"todoDelete": {

_ "deleted": true

1

- 8

"todoCreated": {
"id": "job-test-002",
"title": "From job-runner",
"done": false

"

i’y

"todoUpdated": {
"id": "job-test-002",
"title": "From job-runner",
"done": true

1
"todoRead": {
"id": "job-test-002",
"title": "From job-runner",
. "done": true
}

5
~ "}d": "628bd965-fc5e-43cf-8e8d-bea39154dofd"

What did we just see?

Define a job

Set starting memory values
Tell the agent to run the job
Check results

What makes this possible?

Job control gives us structure

But the real power lies deeper

Agentic systems depend on flexibility and coordination
That's where the Three Pillars come In

Three Pillars of Agentic Systems

e Discovery

o Find capabilities at runtime
e Composable Services

o Expose common interface
e Shared Memory

o Act as “glue” across API calls

Discovery

k-

Finding Capabilities

Support “Find and Bind”

Based on OPEN-DISCO
Providers register a capability
Consumers search for capabilities

Open DISCO

Summary
This document details an adhoc specification called DISCO (Discovering Interoperative Services for Continuous Operation). DISCO is a simple language for
managing the adding/removing of services as well as the ability to search ("find") and make connections with ("bind") registered services.

DISCO was designed to be easy, open, lightweight, and extensible. For this reason, readers/implementers may find things "missing" or "underspecified." This is
intentional. Getting started is meant to be easy. And local customization is supported as needed. This allows the DISCO spec to safely grow and improve over

time without breaking exsting implementations.
The DISCO "language" supports the following features:
register : add a service to the shared registry
find : query the registry for services (dependents) to consume
bind : notify the registry the intention to connect with and use another service
renew : renew a service’s registry lease to prove is is still up and running +

unregister : remove a service from the registry

http://open-disco.org/

Providers Register

Example with curl

" bash

curl -X POST http://localhost:4000/register \

—g T%ontent—Type: application/json” \

"serviceName': "example",
"serviceURL": "http://localhost:6000",
"tags'': ["example"”],
'”pingURL”: "http://localhost:6000/ping”

Providers Register

Name

URL

Search tags
Optional ping URL

Consumers Search

GET /find?tag=todo
Finds services registered under a given tag.

Response
- json
[

{

"serviceName': "todo-service",
"serviceURL": "http://localhost:5000",
"tags': ["todo", "task"]

Consumers Search

e Pass tag(s)
e Select service from list

o Via URL
e Optionally, check ping for status

Demo

o e S

"timestamp":"2025-09-30T10:40:36.981z2","level":"info","action":"startup"”, "port" :4000}

"woon

4-6c33f5f9e600", "serviceName":"shared-state", "serviceURL":"http://localhost:4500"}
{"timestamp":"2025-09-30T10:40:40.139Z2","level":"info","action":"register", "registryID"

0-19ac8e012c5c", "serviceName" :"todo-service","serviceURL" :"http://localhost:4001"}

{"timestamp":"2025-09-30T10:40:40.1722","level":"info","action":"register"”, "registryID":

4-felb02184d0f","serviceName" :"service-b","serviceURL":"http://localhost:4200"}

{"timestamp":"2025-09-30T10:40:40.213Z2","level":"info","action":"register"”, "registryIiD":

0-e9f41a8aed40d", "serviceName service-a","serviceURL":"http://localhost:4100"}

{"timestamp":"2025-09-30T710:40:40.235Z2","level":"info","action":"register", "registryIiD":

9-b4593ce23107", "serviceName':"person", "serviceURL":"http://localhost:4600"}

{"timestamp":"2025-09-30T10:40:40.240z2","level":"info","action":"register","registryIiD":

9-653bc76d897c", "serviceName":"service-c-writer","serviceURL":"http://Tocalhost:4300"}

{"timestamp":"2025-09-30T10:40:40.2527","level":"info","action":"register"”, "registryID":

2-e17841c4167f","serviceName":"service-c-reader","serviceURL":"http://Tocalhost:4400"}

{"timestamp":"2025-09-30T710:40:40.253Z2","level":"info","action":"register"”,"registryID":

9-1a9df1bf8db2", "serviceName": "openweather","serviceURL":"http://localhost:4602"}
{"timestamp":"2025-09-30T10:40:59.545Z7","level":"info","action":"find","filters":{"tag"
{"timestamp":"2025-09-30T10:40:59.5897","level":"info","action":"find","filters": {’
{"timestamp":"2025-09-30T10:40:59.606Z2","level":"info","action":"find","filters":{"tag"
{"timestamp":"2025-09-30T10:40:59.618z","level":"info","action":"find","filters": {’

"timestamp":"2025-09-30T10:40:38.028Z","Tevel":"info","action":"register","registryID":

"601332e7-b150-4c00-9ba

:"93915ef1-9090-48ff-a72

"b8196883-373c-4a32-820
"fbe5f7e7-f6cc-4648-a68
"b7aeb342-888c-4337-a9%b
"06dbf9dd-eab9-4ad8-9fb
"c44952dc-944b-4abd-b93
"10bb7ffc-c160-477a-8aa

:"todo"}, "matches":1}
ltagll: l}’

:"todo"}, "matches":1}
ltag'l: l}’

"todo"}, "matches":1}

‘todo"}, "matches":1}

Provider registers on startup

// Self-registration with discovery
async function registerwithDiscovery() {

By |
const registryURL = "http://localhost:4000/register’;

const serviceInfo = {
serviceName: 'todo-service',
serviceURL: http://localhost:${PORT} ,
tags: ['todo', 'create', 'read', 'update', 'delete’', 'filter'],
semanticProfile: 'urn:example:todo’,
mediaTypes: ['application/json'],
y pingURL: http://localhost:${PORT}/ping

const response = await axios.post(registryURL, serviceInfo);
log('register’, { registryID: response.data.registryID });

} catch (err)
log('register-failed’', { error: err.message }, ‘error');

Consumer finds and binds

const response = awalt axios.get(discoveryURL,
params: { tag: task.tag }

s

if (!response.data.length) throw new Error(No service found for tag ${task.tag});
const service = response.datal[0];)
const form = await axios.get(${service.serviceURL}/forms);

const mode = step.mode || 'execute';
const targetForm = form.data.find(f => f.rel === mode);
if (!'targetForm) {
//throw new Error(No form found for mode '${mode}');
log('step-unknown-mode', { step: step.name, mode }, ‘warn');
I return { status: 'skipped', reason: 'unknown mode', step: step.name };

}

Discovery Solved

Services register at startup

Clients search the registry at runtime
Matched searches results in “Find and Bind”
Services unregister at shutdown

https.//mamund.substack.com/p/from-discovery-to-execution

+

Three Pillars of Agentic Systems

e Discovery

o Find capabilities at runtime
e Composable Services

o Expose common interface
e Shared Memory

o Act as “glue” across API calls

Composable Services

Why Composable?

e Agents need a stable interface
o Same for any capability
e Agents need consistency in input/output
o Pass structured msgs, not data object
e Agents need repeatable and reversible actions

Three Universal Actions

e execute: perform the core operation
e repeat: idempotent re-run or state fetch
e revert: undo the last operation

These three affordances enable state-aware, reversible workflows

Three Universal Actions

app.post('/execute', async (req, res) => {
const { name, args } = req.body;
if (name !== 'getWeather') return res.status(400).json({ error: 'Unsupported command' });

Ry 4
const result = await getweather(args);
Tog('execute-success', { name, args, result });
res.json(result);
catch (err) {
log('execute-error', { error: err.message }, 'error');
res.status(500).json({ error: err.message });

}
s

app.post('/repeat', (req, res) => {
try {

const result = repeatLast();
log('repeat-success', { result });
res.json(result);
catch (err) {
Tog('repeat-error', { error: err.message }, 'error');
res.status(400).json({ error: err.message });

}
s

app.post('/revert', (req, res) => {
const result = revert();

B log('revert-complete', { result });
res.json(result);

3

Passing Structured Messages

echo "2. Create a TODO with ID 'test-009'"
curl -s -X POST http://localhost:4001/execute \
_Q ?%ontent—Type: application/json” \
"command”: "create",
"resource”: "todo",
id": TTest=a09",
"payload”: {
"title”: "walk the dog",
"done": false

Designing a Service Interface Wrapper

"title": "Openweather Wrapper",
“version": "1.0.0",
"description"”: "Composable wrapper for querying current weather from
"serviceInfo": {
"serviceName": "openweather",
"description"”: "Provides weather data via the Openweather API",
"tags": ["weather", "proxy", "external"],

: "mediaTypes": ["application/json"]
S
"resourceType': "weather",
"resourceSchema": {
"weather": {
"temperature”: { "type": "number" },
“conditions”: { “type": “string” }
}
r
"authorization": {
: “roles™: []
J
"commands": {
"getweather": {
"description"”: "Gets current weather by city",
"transitionType": {
"safe": true,

We an even wrap other APIs

mca@mamund-ws:~/.../jobs$ job-runner open-weather.json

"title": "open-weather api”,
“TRpUaE" 3 {
"weather”: {

"temperature': 20.26,
"conditions": "Clear"”

Composable Services

e Three Universal Actions
O execute, repeat, revert

e design. json for exposing interfaces

e \Wrapping existing APls for composability
o open-weather API

Agents can now compose solutions w/ capabilities

Three Pillars of Agentic Systems

e Discovery
o Find capabilities at runtime
e Composable Services
o Expose common interface
e Shared Memory
o Act as “glue” across API calls

Shared State

Shared State: The Missing Piece

e Composable, findable services are fine
e Agents that can execute operations are good
e But what do we do with the results of API calls?

Shared State: What We Need

e \WVe need a shared space to store/retrieve data
e External to any agent or service
e Supports read/write during execution of workflows

Coordination Without Coupling

e Services remain stateless
o No private internal session needed
e Agents and jobs can pass data without modifying APls
o The APl doesn’t need to know
e Enables multi-step, multi-service, multi-agent coordination

A simple HTTP interface

POST /state’
Create a new shared state document.
{ id?: string, key: value,
*% "{ stateURL: string }

“GET /state/:id’
Get document contents (no metadata).
eturns:** Raw JSON
No metadata is included**
o Tink to metadata is provided (for security)#**

4 "GET /state/:id?”meta
Get only metadata for the document.
- **Returns:** { id, createdAt, lastModified }

"POST /state/:id

Mefge new values into an existing document.
Body: " { key: value,

~PATCH /state/:id

Patch an ex1st1ng document using:

- { op: add”, path /Some/path" value:
- { op: "merge", value: { } }\

"DELETE /state/:id’
Remove a document. No error if it does not exist.

“GET /state

[Mist metadata for all known state documents.

- Each entry includes: { id, createdAt, TastModified, rel: "item", href }
Does not include document content

State documents are the universal memory

mca@mamund-ws:~/.../scripts$./test-shared-state-merge.sh
¢ Creating shared state document...

}

¢ Merging new values into shared state...

® Sending invalid merge value (not an object)...

A 7 o R, (L O DU O YR VI XA | R SRS UR - S0 WORNUR - eapupae. .y (PR |

Shared State Summary

e Shared state decouples logic from services
e The glue between autonomous steps
e Enables resilient, auditable, and agent-friendly jobs

Pulling it all together

The To-Do Agentic Loop

Composable To-Do service L List all ToDOs

Agentic job-runner to process data
Discovery to match services to agents
Shared state to handle memory

Full lifecycle of agentic operations

Agent Registry Service

Search for services tagged ‘translation’

v

Return list of running translation services

Select candidate service based on metadata

Request interface description (terms, actions, 1/0)

Return affordance metadata
4 ...
Send valid ‘translate’ request
Return translated text
e

Extract result and complete task

o

Agent Registry Service

And So ...

Agentic Systems

e Agents can be autonomous and still be deterministic
e You don't need LLMs to start today
e You do need an agent platform

o Discovery

o Composability

o Shared state

Three Pillars

e Discovery matches service capabilities w agents
e Composability makes enlisting services easy
e Shared state offers the glue

o Multi-step

o Multi-service

o Multi-agent

Call to Action

You have all the parts of an agentic platform already
Start by building composable service interfaces

Add discoverability

Establish shared-state

Finally, create job-runner agents

Additional Resources

Signals from Our Futures Past Qa D &8

Home Notes Archive About

Correctness Isn’t
Competence
) Al-generated code risks becoming a liability in
production unless we demand efficiency and
quality.

2 HRS AGO * MIKE AMUNDSEN

Most Popular

VIEW ALL

GenAl's Bezos Mandate? 7 Reimagining Agentic

Shopify Just Issued It h Systems
& APR 8+ MIKE AMUNDSEN

& APR15 - MIKE AMUNDSEN

The Growing Medium for
API Ecosystems

& APR 23 « MIKE AMUNDSEN

Additional Resources

Signals from Our Futures Past Qa D &8

Home Notes Archive About

Discovering Interoperative Services for Continuous Operation (DISCO)

Mike Amundsen
<mca@mamund . com>

Most Popular

GenAl’'s Bezos Mandate?
Shopify Just Issued It
& APR 8 - MIKE AMUNDSEN

Table of Contents
Status
Summary
DISCO Resources
DISCO Design Goals
Service-Side Implementation for NodeJS
The DISCO Registry Specification
DISCO Registry Service Definition:
DISCO Registry Service Sequence Diagram
DISCO Registry Service Basics
DISCO Registry Service Actions
DISCO Registry Vocabulary
DISCO Search
Other Search Considerations
Registry Bind Tokens
The Simple Bind Token

+

Additional Resources

Most Popular

GenAl’'s Bezos Mandate?
Shopify Just Issued It
& APR 8 - MIKE AMUNDSEN

Signals from Our Futures Past

Home Notes Archive About

O 4o

Discovering Interoperative Services fo

Mike Amundsen
<mca@mamund . com>

Table of Contents
Status
Summary
DISCO Resources
DISCO Design Goals
Service-Side Implementation for NodeJS
The DISCO Registry Specification
DISCO Registry Service Definition:
DISCO Registry Service Sequence Diagram
DISCO Registry Service Basics
DISCO Registry Service Actions
DISCO Registry Vocabulary
DISCO Search
Other Search Considerations
Registry Bind Tokens
The Simple Bind Token

+

[J README V4

Core Components

discovery/

A lightweight in-memory discovery service that allows services to register themselves, provide metadata, and respond
to health checks.
Key endpoints: /register , /unregister, /ping, /services

shared-state/

A shared-state document store for holding structured state across job runs.
Key endpoints: POST /state, GET /state/:id, PATCH /state/:id , DELETE /state/:id

job-control/

Orchestrates multi-step jobs with sequential steps and parallel tasks. Each task is a call to a registered service, and
results can be stored in shared-state.
Key features:

o Declarative job definitions

e s$fromstate syntax for dynamic input resolution
e Result storage via storeResultAt

e Reversible execution model

e Support for step/task-level disabling (enabled: false)

"The best way to predict the
future is to create it."

-- Alan Kay

Alan Kay: computer
scientist, pioneer of
object-oriented
programming and the
personal computer.

Creating Your Own MCP-Style
Agentic System Right Now

MikeAmundsen
@mamund

