
Learning the Three Types 
of Microservices

Mike Amundsen
@mamund

API Academy

SACon London 2018





http://apiacademy.co



http://g.mamund.com/msabook



@TheCAMBook

"A reusable guide to the 
technology, business, and 

politics of doing APIs at scale 
within the enterprise."

-- Kin Lane, API Evangelist



http://g.mamund.com/cambook



Overview

● Programming the Network
● Microservices
● Three Types of Microservice Components
● Nygard's Stability Patterns
● Applying Nygard to Microservices
● But Wait, There's More...

















Traveling



Traveling



Traveling
the Network



Programming
the Network







"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

"There is no simultaneity at a 
distance." 

-- Pat Helland (2005) 

Programming the Network

Pat Helland



Newton rules the "inside"

Sir Isaac Newton



Einstein rules the "outside"

Albert Einstein



"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Programming the Network

Pat Helland



"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Programming the Network

Pat Helland



"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Programming the Network

Pat Helland



https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Fallacies of Distributed Computing (1994)

L Peter Deutsch



The Language of the System, Rich Hickey (2012) https://www.youtube.com/watch?v=ROor6_NGIWU

The Language of the System (2012)

Rich Hickey



Programming the Network brings 
new challenges



Microservices



 
"An approach to developing a 
single application as a suite of 

small services, each running in 
its own process and 

communicating with lightweight 
mechanisms."

-- Martin Fowler, 2014

https://www.thoughtworks.com/insights/blog/microservices-nutshell



"Emphasizes scalability of 
component interactions, 
generality of interfaces,

independent deployment of 
components, and intermediary 

components."

-- Roy Fielding, 2000



"A universal linked information 
system, in which generality and 
portability are [most] important." 

-- Tim Berners-Lee, 1989



Microservice Characteristics

● Make each program to one thing well
● Expect the output of every program to be the input of 

another program
● Design and build software to be tried early
● Use tools to lighten the programming task



Unix Operating Principles (1978)

● Make each program to one thing well
● Expect the output of every program to be the input of 

another program
● Design and build software to be tried early
● Use tools to lighten the programming task

https://en.wikipedia.org/wiki/Unix_philosophy



Loosely-coupled components 
running in an 

engineered system.



Three Types of Microservices



Three Types of Microservices

● Stateless
● Persistence
● Aggregator



Stateless Microservices



Stateless Microservices

● Simple processors (converters, translators, etc.)
● No dependence on other microservices
● No local data storage (disk I/O)

The most common MSC example, but the least useful!



Stateless Microservices

● No shared state
● Easy to replace
● Easy to scale up

Ephemeral Computing



Stateless Microservices

WARNING: NOT REAL CODE!



Persistence Microservices



Persistence Microservices

● Simple (local) storage (reads and/or writes)
● Disk I/O dependent
● Possibly VM or one-U dependent

Commonly needed MSC, not the easiest to implement.



Persistence Microservices

● System of Record/Source of Truth
● Relatively easy to scale for reads (CQRS)
● No cross-service two-phase commits (Saga)

Durable Storage



Persistence Microservices

WARNING: NOT REAL CODE!



Aggregator Microservices



Aggregator Microservices

● Depends on other ("distant") microservices 
● Network dependent
● Usually Disk I/O dependence, too

The most often-needed; most challenging, too.



Aggregator Microservices

● Sequence vs. Parallel calls
● Timing is everything
● Easy to scale (should be…)

Workflow Choreography



Aggregator Microservices

WARNING: NOT REAL CODE!



Three Types of Microservices

● Stateless (ephemeral)
● Persistence (durable)
● Aggregator (workflow)



But, what about the network?



Nygard's Stability Patterns



“Bugs will happen. They 
cannot be eliminated, so they 

must be survived instead.” 

-- Michael T. Nygard





Nygard Stability Patterns

● Timeout
● Circuit Breaker
● Bulkhead
● Steady State
● Fail Fast
● Handshaking



"Nygard Stability Patterns" -- Timeout

"The timeout is a simple mechanism allowing you to stop 
waiting for an answer once you think it will not come." 

-- Chapter 5.1



"Nygard Stability Patterns" -- Timeout

"The timeout is a simple mechanism allowing you to stop 
waiting for an answer once you think it will not come." 

-- Ch 5.1

WARNING: NOT REAL CODE!



"Nygard Stability Patterns" -- Circuit Breaker

"Circuit breakers are a way to automatically degrade 
functionality when the system is under stress." 

-- Chapter 5.2



"Nygard Stability Patterns" -- Circuit Breaker

"Circuit breakers are a way to automatically degrade 
functionality when the system is under stress." 

-- Chapter 5.2



"Nygard Stability Patterns" -- Bulkhead

"The bulkhead enforces a principle of damage containment."
-- Chapter 5.3



"Nygard Stability Patterns" -- Bulkhead

"The bulkhead enforces a principle of damage containment."
-- Chapter 5.3



"Nygard Stability Patterns" -- Bulkhead

"The bulkhead enforces a principle of damage containment."
-- Chapter 5.3



"Nygard Stability Patterns" -- Steady State 

"The system should be able to run indefinitely without human 
intervention." 

-- Chapter 5.4● Avoid fiddling
● Purge data w/ app logic
● Limit caching
● Roll the logs



"Nygard Stability Patterns" -- Steady State 

"The system should be able to run indefinitely without human 
intervention." 

-- Chapter 5.4● Avoid fiddling
● Purge data w/ app logic
● Limit caching
● Roll the logs



"Nygard Stability Patterns" -- Fail Fast

"If the system can determine in advance that it will fail at an 
operation, it’s always better to fail fast."

-- Chapter 5.5



"Nygard Stability Patterns" -- Fail Fast

"If the system can determine in advance that it will fail at an 
operation, it’s always better to fail fast."

-- Chapter 5.5

WARNING: NOT REAL CODE!



"Nygard Stability Patterns" -- Handshaking

"Handshaking is all about letting the server protect itself by 
throttling its own workload."

-- Chapter 5.6



"Nygard Stability Patterns" -- Handshaking

"Handshaking is all about letting the server protect itself by 
throttling its own workload."

-- Chapter 5.6

WARNING: NOT REAL CODE!



"Nygard Stability Patterns" -- Cache

"Caching can reduce the load on the server and cut response 
times to a fraction of what they would be without caching."

-- Chapter 10.2



"Nygard Stability Patterns" -- Cache

"Caching can reduce the load on the server and cut response 
times to a fraction of what they would be without caching."

-- Chapter 10.2

WARNING: NOT REAL CODE!



"Nygard Stability Patterns" -- Cache

"Caching can reduce the load on the server and cut response 
times to a fraction of what they would be without caching."

-- Chapter 10.2

WARNING: NOT REAL CODE!



Stabilizing Stateless Microservices



Stateless Microservices

WARNING: NOT REAL CODE!



Networked Stateless

● What if the work takes too long?



Stable Stateless Microservices

1. Fail-Fast

WARNING: NOT REAL CODE!



Stabilizing Persistence Microservices



Persistence Microservices

WARNING: NOT REAL CODE!



Networked Persistence 

● What if the work takes too long?
● What is the dependent service doesn't respond in time?
● What if the dependent service is down?
● What if the storage overflows (data, logs, etc.)?



Stable Persistence Microservices

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State

WARNING: NOT REAL CODE!



Stabilizing Aggregator Microservices



Aggregator Microservices

WARNING: NOT REAL CODE!



Networked Aggregators

● What if the work takes too long?
● What if a dependent services doesn't respond in time?
● What if a dependent service is down?
● What if storage overflows (data, logs, etc.)?
● What if a dependent service is unhealthy?
● What if traffic for a service spikes?



Stable Aggregator Microservices

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State
5. Handshaking
6. Bulkhead

WARNING: NOT REAL CODE!



Nygard's Admonition...



Applying Nygard's Patterns to Services
● Stateless

○ fail fast
● Persistence

○ fail fast, timeout, circuit breaker, steady state
● Aggregation

○ fail fast, timeout, circuit breaker, steady state, handshaking, bulkhead

Apply Nygard's Stability Patterns 
to improve the health 

of your components and your system.





https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

"Interoperation is peer to peer. Integration is 
where a system is subsumed within 
another." 

-- Michael Platt, Microsoft

Aim for Interop, not Integration...



Aim for Interop, not Integration...

By Wkinterop - Powerpoint -> PNG, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=35139609



https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

"There is no simultaneity at a distance." 

-- Pat Helland, Salesforce

Include time/distance in your models

Pat Helland



"I'm sorry that coined the term 'objects' for this 
topic. The big idea is 'messaging'."

Alan Kay, 1998

Include time/distance in your models



https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

L Peter Deutsch

Remember, you're programming the network



●Safety

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



●Safety The HTTP protocol supports 
a number of "safe" actions such 
as HEAD, and GET. 

The HTTP methods PUT, POST, 
and DELETE are categorized as 
"unsafe" actions.

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



●Safety
●Idempotence

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



●Safety
●Idempotence

In HTML when a FORM element 
has the METHOD property set to 
"get" this represents an 
idempotent action. 

When the same property is set to 
"post" the affordance represents a 
non-idempotent action.

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



Other Considerations...

● Interop vs. Integration
● Time & Distance
● Safety & Idempotence



So...



We need microservices...



 So that we can program the network...



Which means applying patterns to our code..,

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State
5. Handshaking
6. Bulkhead



And that means understanding the role of semantics...



And the role of distance & time...



And constantly reminding ourselves of the challenge.



That's a lot!



The Best Software Architecture
"The best software architecture 'knows' what 

changes often and makes that easy."
- Paul Clements



Let's continue the conversation...



Learning the Three Types 
of Microservices

Mike Amundsen
@mamund

API Academy

SACon London 2018



Learning the Three Types 
of Microservices

Mike Amundsen
@mamund

API Academy

SACon London 2018


