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Overview

● Programming the Network
● Microservices
● Three Types of Microservice Components
● Nygard's Stability Patterns
● Applying Nygard to Microservices
● But Wait, There's More...
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"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

"There is no simultaneity at a 
distance." 

-- Pat Helland (2005) 

Programming the Network

Pat Helland



Newton rules the "inside"

Sir Isaac Newton



Einstein rules the "outside"

Albert Einstein
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https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Fallacies of Distributed Computing (1994)

L Peter Deutsch



The Language of the System, Rich Hickey (2012) https://www.youtube.com/watch?v=ROor6_NGIWU

The Language of the System (2012)

Rich Hickey



Programming the Network brings 
new challenges



Microservices



 
"An approach to developing a 
single application as a suite of 

small services, each running in 
its own process and 

communicating with lightweight 
mechanisms."

-- Martin Fowler, 2014

https://www.thoughtworks.com/insights/blog/microservices-nutshell



"Emphasizes scalability of 
component interactions, 
generality of interfaces,

independent deployment of 
components, and intermediary 

components."

-- Roy Fielding, 2000



"A universal linked information 
system, in which generality and 
portability are [most] important." 

-- Tim Berners-Lee, 1989



Microservice Characteristics

● Make each program to one thing well
● Expect the output of every program to be the input of 

another program
● Design and build software to be tried early
● Use tools to lighten the programming task



Unix Operating Principles (1978)

● Make each program to one thing well
● Expect the output of every program to be the input of 

another program
● Design and build software to be tried early
● Use tools to lighten the programming task

https://en.wikipedia.org/wiki/Unix_philosophy



Loosely-coupled components 
running in an 

engineered system.



Three Types of Microservices



Three Types of Microservices

● Stateless
● Persistence
● Aggregator



Stateless Microservices



Stateless Microservices

● Simple processors (converters, translators, etc.)
● No dependence on other microservices
● No local data storage (disk I/O)

The most common MSC example, but the least useful!



Stateless Microservices

● No shared state
● Easy to replace
● Easy to scale up

Ephemeral Computing



Stateless Microservices

WARNING: NOT REAL CODE!



Persistence Microservices



Persistence Microservices

● Simple (local) storage (reads and/or writes)
● Disk I/O dependent
● Possibly VM or one-U dependent

Commonly needed MSC, not the easiest to implement.



Persistence Microservices

● System of Record/Source of Truth
● Relatively easy to scale for reads (CQRS)
● No cross-service two-phase commits (Saga)

Durable Storage



Persistence Microservices

WARNING: NOT REAL CODE!



Aggregator Microservices



Aggregator Microservices

● Depends on other ("distant") microservices 
● Network dependent
● Usually Disk I/O dependence, too

The most often-needed; most challenging, too.



Aggregator Microservices

● Sequence vs. Parallel calls
● Timing is everything
● Easy to scale (should be…)

Workflow Choreography



Aggregator Microservices

WARNING: NOT REAL CODE!



Three Types of Microservices

● Stateless (ephemeral)
● Persistence (durable)
● Aggregator (workflow)



But, what about the network?



Nygard's Stability Patterns



“Bugs will happen. They 
cannot be eliminated, so they 

must be survived instead.” 

-- Michael T. Nygard





Nygard Stability Patterns

● Timeout
● Circuit Breaker
● Bulkhead
● Steady State
● Fail Fast
● Handshaking



"Nygard Stability Patterns" -- Timeout

"The timeout is a simple mechanism allowing you to stop 
waiting for an answer once you think it will not come." 

-- Chapter 5.1
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WARNING: NOT REAL CODE!
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"The system should be able to run indefinitely without human 
intervention." 

-- Chapter 5.4● Avoid fiddling
● Purge data w/ app logic
● Limit caching
● Roll the logs
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operation, it’s always better to fail fast."

-- Chapter 5.5
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WARNING: NOT REAL CODE!



"Nygard Stability Patterns" -- Handshaking

"Handshaking is all about letting the server protect itself by 
throttling its own workload."

-- Chapter 5.6
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WARNING: NOT REAL CODE!



"Nygard Stability Patterns" -- Cache

"Caching can reduce the load on the server and cut response 
times to a fraction of what they would be without caching."

-- Chapter 10.2
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Stabilizing Stateless Microservices



Stateless Microservices

WARNING: NOT REAL CODE!



Networked Stateless

● What if the work takes too long?



Stable Stateless Microservices

1. Fail-Fast

WARNING: NOT REAL CODE!



Stabilizing Persistence Microservices



Persistence Microservices

WARNING: NOT REAL CODE!



Networked Persistence 

● What if the work takes too long?
● What is the dependent service doesn't respond in time?
● What if the dependent service is down?
● What if the storage overflows (data, logs, etc.)?



Stable Persistence Microservices

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State

WARNING: NOT REAL CODE!



Stabilizing Aggregator Microservices



Aggregator Microservices

WARNING: NOT REAL CODE!



Networked Aggregators

● What if the work takes too long?
● What if a dependent services doesn't respond in time?
● What if a dependent service is down?
● What if storage overflows (data, logs, etc.)?
● What if a dependent service is unhealthy?
● What if traffic for a service spikes?



Stable Aggregator Microservices

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State
5. Handshaking
6. Bulkhead

WARNING: NOT REAL CODE!



Nygard's Admonition...



Applying Nygard's Patterns to Services
● Stateless

○ fail fast
● Persistence

○ fail fast, timeout, circuit breaker, steady state
● Aggregation

○ fail fast, timeout, circuit breaker, steady state, handshaking, bulkhead

Apply Nygard's Stability Patterns 
to improve the health 

of your components and your system.





https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

"Interoperation is peer to peer. Integration is 
where a system is subsumed within 
another." 

-- Michael Platt, Microsoft

Aim for Interop, not Integration...



Aim for Interop, not Integration...

By Wkinterop - Powerpoint -> PNG, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=35139609



https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

"There is no simultaneity at a distance." 

-- Pat Helland, Salesforce

Include time/distance in your models

Pat Helland



"I'm sorry that coined the term 'objects' for this 
topic. The big idea is 'messaging'."

Alan Kay, 1998

Include time/distance in your models



https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

L Peter Deutsch

Remember, you're programming the network



●Safety

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



●Safety The HTTP protocol supports 
a number of "safe" actions such 
as HEAD, and GET. 

The HTTP methods PUT, POST, 
and DELETE are categorized as 
"unsafe" actions.

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



●Safety
●Idempotence

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



●Safety
●Idempotence

In HTML when a FORM element 
has the METHOD property set to 
"get" this represents an 
idempotent action. 

When the same property is set to 
"post" the affordance represents a 
non-idempotent action.

Remember, you're programming the network

https://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf



Other Considerations...

● Interop vs. Integration
● Time & Distance
● Safety & Idempotence



So...



We need microservices...



 So that we can program the network...



Which means applying patterns to our code..,

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State
5. Handshaking
6. Bulkhead



And that means understanding the role of semantics...



And the role of distance & time...



And constantly reminding ourselves of the challenge.



That's a lot!



The Best Software Architecture
"The best software architecture 'knows' what 

changes often and makes that easy."
- Paul Clements



Let's continue the conversation...
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