
Adaptable Clients 

and Evolvable APIs

Mike Amundsen

API Academy / CA

@mamund



Introduction











Twelve Patterns for Adaptable Apps

Four Design Patterns

Four Basic Principles

Four Shared Agreements



Design Patterns

1.PASS MESSAGES, NOT OBJECTS

2.SHARE VOCABULARIES, NOT MODELS

3.THE REPRESENTOR PATTERN

4.PUBLISH PROFILES



Basic Principles

5. MUST IGNORE

6. MUST FORWARD

7. PROVIDE MRU

8. USE IDEMPOTENCE



Basic Agreements

9. USE RELATED

10. USE NAVIGATION

11. PARTIAL SUBMIT

12. STATE WATCH



Caution!

These are preliminary drawings and may 

change prior to publication



Design Patterns



Pass Messages, Not Objects

"I'm sorry that coined the term 'objects' for this 

topic. The big idea is 'messaging'."

Alan Kay, 1998



Pass Messages, Not Objects

"I'm sorry that coined the term 'objects' for this 

topic. The big idea is 'messaging'."

Alan Kay, 1998





Pass Messages, Not Objects

Use a Registered Hypermedia Type

HAL

Collection+JSON

Siren

UBER

Atom



Share Vocabularies, Not Models

"It is easier to standardize representation and 

relation types than objects and object-specific 

interfaces."

-- Roy Fielding



Share Vocabularies, Not Models

"It is easier to standardize representation and 

relation types than objects and object-specific 

interfaces."

-- Roy Fielding





Share Vocabularies, Not Models

Use Existing Shared Vocabularies

IANA Link Relation Values

Schema.org

Microformats

Dublin Core

Activity Streams



Use the Representor Pattern

"The Strategy Pattern lets the algorithm vary 

independently of the clients that use it."

- Gamma, et al.





Use the Representor Pattern

Implement a Representor/Strategy Pattern

Standard Internal Resource Model

Strategy Messages Format Dispatch



Use the Representor Pattern

Implement a Representor/Strategy Pattern

Standard Internal Resource Model

Strategy Messages Format Dispatch



Publish Profiles

"Profiles provide a way to create a ubiquitous 

language for talking about APIs (resources) for 

both humans and machines."

-- Mark Foster



Publish Profiles

Use a Profile like ALPS to share vocabularies

Define all possible data and actions

Publish using Profile Standard (RFC6906)

Servers emit profile URI

Clients validate profile URI



Publish Profiles

Use a Profile like ALPS to share vocabularies

Define all possible data and actions

Publish using Profile Standard (RFC6906)

Servers emit profile URI

Clients validate profile URI



Basic Principles



Must Ignore

“The main goal of the MUST IGNORE pattern 

of extensibility is to allow backwards- and 

forwards-compatible changes.”

- David Orchard



Must Ignore

Clients MUST IGNORE any data/inputs that the 

client does not understand.





MUST FORWARD

“A proxy MUST forward unrecognized header 

fields…”

-- RFC 7230

A proxy MUST forward an unknown header

A proxy MUST forward unrecognized header fields



Must Forward

Clients MUST FORWARD (unchanged) any 

input fields (URL or FORM) that the client does 

not recognize.





Provide MRU

“A feature of convenience allowing users to 

quickly see and access the last few used files 

and documents.”

-- Wikipedia



Provide MRU

Services SHOULD return the most recently-

used (MRU) LINKS and FORMS in all 

responses.





Use Idempotence

“Can be applied multiple times without 

changing the result beyond the initial 

application.”

-- Wikpedia



Use Idempotence

All network requests SHOULD be idempotent in 

order to allow clients to safely repeat them 

when response is unclear.





Shared Agreements



Use Related

Services SHOULD return a RELATED LINK 

that responds with ALL the possible actions for 

this context.





Use Navigation

“To achieve a single goal which can be broken 

down into dependable sub-tasks.”

-- Design Patterns (@uipatterns)



Use Navigation

Services SHOULD provide "next/previous" 

LINK to handle multi-step workflow with 

"cancel", "restart", & "done."





Partial Submit

“Think of the actions as approximations of what 

is desired.”

-- Donald Norman



Partial Submit

Services SHOULD accept partially filled-in 

FORM and return a new FORM with the 

remaining fields.





State Watch

“Data representing variables in a dynamical 

system…”

-- Jens Rassmussen



State Watch

“Data representing variables in a dynamical 

system…”

-- Jens Rassmussen



State Watch

Services SHOULD allow clients to subscribe to 

WATCH VALUES so that clients can deterimine 

"done."





Twelve Patterns for Adaptable Apps

Four Design Patterns

Four Basic Principles

Four Shared Agreements



Design Patterns

1.PASS MESSAGES, NOT OBJECTS

2.SHARE VOCABULARIES, NOT MODELS

3.THE REPRESENTOR PATTERN

4.PUBLISH PROFILES



Basic Principles

5. MUST IGNORE

6. MUST FORWARD

7. PROVIDE MRU

8. USE IDEMPOTENCE



Basic Agreements

9. USE RELATED

10. USE NAVIGATION

11. PARTIAL SUBMIT

12. STATE WATCH



The Best Software Architecture

"The best software architecture 'knows' what 

changes often and makes that easy."

- Paul Clements



Adaptable Clients 

and Evolvable APIs

Mike Amundsen

API Academy / CA

@mamund


