
From APIs to Affordances:
A New Paradigm for Web Services

Mike Amundsen
amundsen.com, inc.

mca@mamund.com

ABSTRACT
The ecosystem of services on the Web continues to grow and
evolve while, at the same time, the number and diversity of
connected devices increases; challenges lie ahead for both
providers and consumers of Web services. This paper is
presented as a ‘what-if’ proposal; an alternate paradigm for
dealing with an increasingly heterogeneous network.

Drawing from diverse sources including physical architec-
ture, industrial design, the psychology of perception, and
cross-cultural mono-myth, a new implementation paradigm
is proposed to help software architects and developers meet
these challenges; one that invites participants to shift their
mental model from that of programming network devices to
programming the network to which those devices are con-
nected.

To accomplish this goal an “affordance-rich message” is
proposed; one that is based on shared understanding through
network-oriented affordances instead of device-oriented APIs.
A working model based on this approach is offered, examples
given, and areas of related work identified.

Keywords
HTTP, WWW, hypermedia, networks, SOA, REST, dis-
tributed computing, web services, usability, evolvability

1. BACKGROUND
In the last several years, the landscape of the Internet has

changed noticeably. There are many more connected de-
vices, more connected applications, and thousands of Web
’APIs’ to service them. This represents a new ’ecosystem’
for the Web; one dominated by small devices loaded with
specialized applications, all talking across the Web using
shared application programming interfaces (APIs). While
the shift did not happen all at once, probably the date that
best marks the start of this new era in the Web would be
January 10, 2007; the day the first Apple iPhone was intro-
duced[13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2012, April 2012; Lyon, France
Copyright 2012 ACM 978-1-4503-1190-8/12/04 ...$10.00.

Figure 1: From Ericsson : 50b devices by 2020

The resulting sales boom launched competitors and an
industry has grown up around the devices themselves. As an
example, even the work force needed to support the creation
of applications for hand-held devices is considered worthy of
scrutiny.

1.1 More Devices
The common wisdom is that the number of devices con-

nected to the Internet is growing rapidly (See Figure 1). In
May of 2009, Intel predicted that the number of ‘connected
devices’ would grow from the then estimated 5 billion to 15
billion by the year 2015 [7]. In an April 2010 press release
[18], the CEO of the Swedish telecommunication company,
Ericsson, predicted the number of connected devices will
balloon to as many as 50 billion by the year 2020.

1.2 The ‘App Economy’
Much has also been made of the ‘App Economy’ - a bur-

geoning market that exists to feed the many devices we all
own and use (See Figure 2). This economy is now viewed
by some as a ’job creator’ worth of special attention. Re-
searcher Dr. Michael Mandel estimates 466,000 new jobs
have been created since the introduction of the iPhone in
2007.[19]

These apps are increasingly written in code that is ’na-
tive’ to the device; thus requiring custom builds for each

Figure 2: From Smart Insights, October 2010

Figure 3: From the Programmable Web

targeted device or family of devices. Not surprisingly, new
products have appeared to decrease the effort needed to pro-
duce the numerous native code builds (i.e. PhoneGap[23],
Appcelerator[3], and others). Of course, there continues to
be debate within the mobile community on whether a ’na-
tive’ or ’browser-based’ approach is preferable.

1.3 More Services
To match the growth in devices and applications, a similar

growth is occurring in services (or ’APIs’) to support the
ecosystem (See Figure 3). The Programmable Web, a site
which catalogs such things recorded more than 4000 Web
APIs as of October 2011 and proudly stated ”The whole
web as a platform has come a long way and done so very
quickly.”[24]

1.4 Summary
Each of these areas of growth represent great opportuni-

ties. Growth means new markets, expanding use of the Web,
and the chance to improve the quality and quantity of data
available to all users.

But there are challenges, too. These rapidly expanding
markets are, for the present, continuing to rely on dated
technologies and mental models. Despite the incredible growth
of the Web both in real (device) and virtual (applications &
APIs) terms, the most common approaches to service this
market are still based on software theories developed at the

dawn of personal computing; when devices where most often
”stand-alone” machines, sometimes connected to each other
over local area networks, and only on occasion (and for brief
periods) connected over slow communication lines to other,
remote devices.

2. THE PROBLEM
There are a number of problems posed by the current

trend in adding many small, dedicated devices to the Inter-
net. This paper focuses on a set of problems at the level of
software architecture; problems that related directly to the
work of enabling communication between connected devices.

2.1 Technical Difficulties
One type of shortcoming in the common implementation

model for Web APIs are technical in nature. Primarily these
are due to incomplete or inappropriate implementation of
the HTTP protocol. While there are many possible minor
difficulties to implementing HTTP (misuse of methods, sta-
tus codes, headers, etc.) two general problems are identified
here:

• Treating HTTP as a Transport

• Lack of Component-Connector Modeling

2.1.1 Treating HTTP as a Transport
Most of the Web API implementations continue to use

traditional RPC-style interfaces. The messages sent over
the wire are simple data blocks, often meant to faithfully
represent a server’s internal objects or data graphs. Usually
the information in carried via a simple data format such
as XML, JSON, CSV, etc. This approach has the effect of
treating HTTP as a transport protocol.[20] and weakens one
of the three pillars of Fielding’s architectural style: the Data
element[8]

When this happens, the ability to communicate options
to the recipient is lost. Client applications are expected
to have a complete understanding of not only the message
received, but also any other possible messages that could be
received or even requested. This dependence on clients to
make all the decisions means that there is almost no “shared
understanding” between clients and servers other than an
understanding of the data format used to pass messages back
and forth and the protocol used to send them.

Using HTTP as a transport can also result in implemen-
tation models that limit client server interactions to only
those that easily map to the protocol’s method set. This is
commonly referred to as HTTP-CRUD[28]. Combining this
limitation of the client-server interaction with the depen-
dence on simple data formats for messages not only misses
key properties of HTTP, it also limits the usability of the
Web for anything other than purpose-built client applica-
tions that rely on a static, isolated understanding of the
problem domain represented by a single server.

2.1.2 Loss of Connector-Component Model
The Connector-Component Model was first described by

Taylor, et al in 1995[27] as Chiron-2 or C2. The origi-
nal model was used to coordinate independent user inter-
face components using a connector to pass messages be-
tween them. Later, Fielding used similar terminology to
describe network-level communications where independent

components (running on separate machines) use protocol
connectors to communicate across the network[8]. For Field-
ing, Component, Connector, and (as seen above) Data were
the three key architectural elements of consideration for his
REST style.

This architectural model (one that relies on independent
components using connectors as intermediaries) has allowed
the Web to continue to scale not just at the runtime level,
but also at the implementation level. Since components only
need to know how to talk to connectors and connectors only
need to know how to talk to other connectors, it is possible
to independently build parts of the network with minimal
design-time co-ordination between parties.

The recent trend in building ’native’ applications for con-
nected devices can result in a loss of the component-connector
paradigm and, in turn, cause problems at scale; at both
the implementation and runtime levels. Employing cross-
platform build tools only masks the problem.

2.2 Competing Priorities
On a more practical level, creating Web services that are

both flexible and easy to use is a challenge. An easy-to-use
Web service is essential for attracting customers. A flexible,
evolvable service that does not tax developers by obsoleting
their work too often, is important for retaining customers
over time. In some cases these are competing priorities.
For example, flexible evolvable systems can be viewed by
developers as difficult to understand.

2.2.1 Immediate Usability
As more Web services appear, they compete for the at-

tention of developers and subscribers. Along with reliability
and performance, Web service providers are growing increas-
ing aware that usability is a key factor for increasing adop-
tion.

If developers cannot understand the Web service, can’t
easily connect and quickly build working solutions for it,
they are likely to look elsewhere. In addition, once a de-
veloper settles on a provider, that developer is not likely to
switch to a new provider since most web service integration
today requires special coding for each and every service; even
for the same service provided by two different vendors (i.e.
peer-to-peer messaging, photo-sharing, etc.).

Thus usability is a key factor in acquiring new customers.
Web services need to offer familiar, easy-to-understand ex-
amples and documentation in formats developers understand
and can quickly convert into working code.

2.2.2 Long-term Evolvability
At the same time, one of the desirable properties of large-

scale systems is the ability to support evolution of the service
over time; evolvability. Fielding defines this as “Evolvability
represents the degree to which a component implementation
can be changed without negatively impacting other compo-
nents.”[8]

A common way to support long-term evolvability is to
use hypermedia affordances within response representation.
Fielding’s REST style, which relies on the use of hypermedia
was conceived with long-term evolvability in mind. In a 2010
interview Fielding states “Most of REST’s constraints are
focused on preserving independent evolvability over time,
which is only measurable on the scale of years.”[9]

2.3 The Time Dimension
Another important aspect of supporting large networks is

the element of time; not at the micro, but the macro level.
Few architectural models consider the passage of time and
how it affects both the participants and the messages they
share.

2.3.1 REST Resources Over Time
In Fielding’s REST style, a resource (that which can be

named) is “a conceptual mapping to a set of entities, not
the entity that corresponds to the mapping at any particular
point in time.” In this way, not only the representation of
the resource can change over time, the data upon which
the resource is based may change as well; including a case
that results in an ‘empty’ resource. Under these conditions,
enforcing contracts on what an identifier will return at some
point in time in the future is likely impossible. Instead, in
REST, “The only thing that is required to be static for a
resource is the semantics of the mapping, since the semantics
is what distinguishes one resource from another.” In other
words, the conceptual meaning identified when the resource
was created is expected to remain constant. If, at the time
of creation, the identified resource is meant to represent ‘the
latest edition of Document A’, it can be expected to continue
to represent ‘the latest edition of Document A’ at any future
point. However, the contents of that document cannot be
expected to remain static over time.

2.3.2 Static Contracts
Unlike Fielding’s focus on the semantics of the identi-

fied resource, the most common attempts to describe how
clients and servers interact over the network (i.e. WSDL[6],
WADL[16], etc.) rely on static interface contracts that do
not change over time. Whereas message-based media types
whose processing models describe possible affordances (con-
trols) which could appear within responses, typical Web API
contracts contain a set of function calls (including arguments
and return types) which the client can use to ”compose”their
own set of interactions with the server (usually after some
level of coordination via additional documentation). Web
APIs have no clear means for communicating the semantics
of the identified resources.

Static contracts can result in ‘frozen’ implementations that
are unable to easily evolve over time as the problem domain
changes. Even more important, focusing on ‘native’ imple-
mentation strategies can result in mixing the connector se-
mantics (i.e. HTTP protocol) with the component seman-
tics (i.e. the problem domain) in ways that make it more
difficult to modify the application over time. It is possible
that application vendors have little incentive to create long-
lived applications since their revenue maybe derived from
the constant update/replacement of ‘obsolete’ apps. How-
ever, many app providers may not be focused on gaining
revenue through the replacement of what could be perfectly
acceptable applications if implemented differently.

2.3.3 Transient Devices, Persistent Networks
Current trends indicate that the hand-held computing de-

vices are not only seen as essential in today’s world, they are
also treated as disposable. A 2010 report estimated Ameri-
cans dispose of 130 million cell phones each year[26].

While devices can be viewed as transient, the networks
themselves continue to run 24x7 and, now more then ever,

are available via wireless connection to the point where it is
possible to remain connected throughout the day, even while
traveling. With continued use of CDNs (Content Delivery
Networks) and the rise in SaaS (Software as a Service), not
only can users stay connected, there is increasing likelihood
they can access their personal content at all times.

In this light, continuing to focus efforts on programming
each device natively, encoding all the domain knowledge on
these devices, may not be the best way to make use of soft-
ware developers’ (and architects’) energies. Instead it may
make more sense to leverage the network itself; to actually
program the network instead of the connected devices. This
idea represents not just an adjustment in focus, but also a
change in the way network applications are architected and
implemented.

3. OTHER DISCIPLINES
Before moving on to a proposed alternate paradigm for

modeling communication along the network it may be infor-
mative to highlight similarities in observations about per-
ception and communication from other disciplines. Here five
perspectives on the way humans perceive and communica-
tion information are offered for the reader’s consideration.
The purpose here is to identify a similar thread through-
out multiple disciplines; a thread that may be applied to
modeling communication on widely distributed networks.

3.1 Architecture
In 1979 Christopher Alexander released the first in a se-

ries of texts describing his approach to physical architecture:
“The Timeless Way of Building”[1]. In it, he asserts that
“[P]eople can shape buildings ... using pattern languages
and that “A pattern language gives each person who uses
it the power to create an infinite variety of new and unique
buildings, just as ordinary language gives him the power to
create an infinite variety of sentences.”

In 1987, Beck and Cunningham presented a workshop at
OOPSLA-87: “Using Pattern Languages for Object-Oriented
Programs”[4]. The abstract contained the following report:
“Our initial success using a pattern language for user inter-
face design has left us quite enthusiastic about the possibil-
ities for computer users designing and programming their
own applications.”

For Alexander, patterns (and languages built up from
them) are a transcendent means of communication. Alexan-
der’s pattern language relies on the notion that all individu-
als can recognize abstract patterns, regardless of variance of
time (over the centuries) or place (Rome, Africa, China, the
Americas, etc.). Beck and Cunningham, and many who fol-
lowed them, were able to apply this same notion to software
designed to support direct human interaction (i.e. graphical
interfaces).

3.2 Visual Perception
Around the time that Beck and Cunningham were apply-

ing Alexander’s pattern model to implementing graphical
user interfaces, psychologist James Gibson explored the con-
cept of “affordance” in his book “The Ecological Approach
to Visual Perception.”[11] For Gibson, affordances were the
“action possibilities”of the environment in which the subject
resides. These possibilities were perceived by the subject in
relation their abilities. For example, an short opening two

feet wide might be perceived as a ’doorway’ to a small crea-
ture, but not to an animal six feet tall.

Gibson claimed that animals continually ‘sampled’ their
surroundings and made decisions based on the affordances
available to them at the moment. For Gibson, the world
was divisible into ecological niches; each with their own set
of affordances and animals within that niche became expert
at exploiting the available affordances. Affordances (and
therefore options) were everywhere and, like Alexander, Gib-
son believed these affordances could be described in general
terms (doorway, chair, step, etc.) that applied across envi-
ronments.

3.3 Industrial Design
The notion of affordances was further refined by Donald

Norman in his 1988 book“The Design of Everyday Things.”[22]
Norman applied Gibson’s ideas to industrial design and HCI
(Human-Computer Interaction) to help launch the field of
Usability. Along the way Norman identified the Seven Stages
of Action to describe how humans usually interact with their
environment in order to accomplish a goal:

1. Set a goal

2. Form an intention to reach that goal

3. Specify and action

4. Execute that action

5. Perceive the state of the world

6. Interpret the state of the world

7. Evaluate the outcome against the goal.

Norman also described the notion that humans approach
the environment (and its affordances) with some level of
information already “in the head” and use their perception
to discover information “in the world”. It is this mix of “in
the head” and “in the world” that determines the usability
of an object (for that individual).

By detailing a series of steps humans use to reach their
goals and acknowledging that information resides both within
and without the individual, Norman’s vision of the world
includes not just Alexander’s patterns and Gibson’s affor-
dances, but also the knowledge and goals of the participant.

3.4 Cross-Cultural Mono-Myth
American mythologist and writer Joseph Campbell de-

scribed a different kind of shared pattern in his 1949 work
“The Hero with a Thousand Faces.”[5] For Campbell the
‘hero’s journey’ was a story which not only appeared in mul-
tiple cultures across both space and time, but it retained the
same general pattern which he summarized as follows:

“A hero ventures forth from the world of common
day into a region of supernatural wonder: fabu-
lous forces are there encountered and a decisive
victory is won: the hero comes back from this
mysterious adventure with the power to bestow
boons on his fellow man.”

Campbell’s work explored the idea that this shared story
was evidence of communication based on archetype and metaphor;
something that transcends any single language or culture.

For Campbell, the Mono-Myth was a way to share under-
standing across the divides of clan, kingdom, and time. How-
ever, unlike Alexander who focused on self-standing patterns
in the world, Campbell asserts that entire portions of culture
and story can be viewed as a single ‘shared understanding.’

3.5 The Map is not the Territory
Another view of human communication was put forward

by Alfred Korzybski in his 1933 tome “Science and San-
ity.”[15] Here, Korzybski outlines his view that human knowl-
edge is limited not only by our ability to perceive the world
but also the language we use to describe what we perceive.
For him, our perception is always incomplete; always missing
details and filtered by our current beliefs. It was Korzybski
who coined the phrase: “The map is not the territory.”

Korzybski acknowledged that this ability to function us-
ing only a general description of the world allowed humans
to develop language, create names for things and share un-
derstanding (however imperfect). Shared understanding of
the general nature of the world is how humans successfully
interact with the environment and it is through language
that they share knowledge over space and time. Thus, like
Campbell, Korzybski saw understanding as rooted in the
language we used to describe our surroundings.

3.6 Summary
What all these examples have in common is the notion

that there are identifiable entities (patterns, affordances,
general concepts, etc.) to which we all can relate; across
culture, time and distance. For Alexander, a ‘doorway’ is
a universal concept that can be referenced by all. For Gib-
son, this ‘doorway’ is recognizable even when it has only the
barest visual resemblance to our common idea of a doorway
(i.e. an entrance to a cave). For Norman, doorways can
be rendered more (or less) usable through the application
of design principles that can be applied across cultures. For
Campbell, the possible meanings of a doorway (as a thresh-
old to a magical place, as a metaphor for moving to a new
stage of life, etc.) are also shared.

And finally, Korzybski tells us that all communication is
essentially approximate. That the concept of a ‘doorway’
is useful (possibly more so) when it’s left vague and gen-
eral. This generality of shared semantic understanding is
the basis for our ability to communicate. We’d be eternally
frustrated and lost if we could only successfully communi-
cate when all of us agreed on the exact meaning of every
detailed utterance.

So, if the notion of shared understanding through general
concepts - ones that are only loosely defined - is a useful
paradigm in the fields of architecture, product design, psy-
chology, and story-telling, could it not also be useful in the
design and implementation of systems built specifically for
sharing information? Do these other disciplines lead us to
an alternate way of thinking about information networks
themselves?

Instead of working to narrow the scope and meaning -
to remove the ambiguity - of network communications; in-
stead of working to create static interfaces that are tied to
a specific place and time, maybe there is a way to mimic
pattern languages on the network itself; to improve shared
understanding by dealing in general concepts communicated
through the use of mutually understood affordances in ways
that allow for local interpretation and embellishment with-

out the loss of basic meaning.
What would such a system look like? How would it be

organized? What are the details of how this kind of com-
munication can be shared over the network?

4. AN AFFORDANCE PARADIGM
If we accept the notion that our view of the world is, by

nature always imperfect and that it is shaped not only by our
observation but also the language we use to describe it then,
it may be possible to use a new description language to help
use alter our view of the way devices can communication
over the Web.

To this end, this paper identifies two new maxims for the
implementation of distributed network applications:

1. Program the network, not the device

2. Rely on affordance-rich messages for communication

The current paradigm for programming network devices is
to use the available network as a mere transport over which
to ship serialized objects and data graphs based on static
programming interfaces. This model is based in the early
event-driven, object-oriented paradigm typified by Smalltalk-
80.[12] This approach fit well with the (then new) pattern
theories of Alexander and Beck Cunningham. It made sense
for handling the interaction of small components arranged
within a local graphical interface.

But a model for enabling communication between UI com-
ponents all running in the same computing space is not the
best approach for enabling communication between com-
ponents over a widely distributed heterogeneous network.
Fielding outlined this point of view in his 2001 dissertation[8]
using an example architectural style he labeled REST. What
Fielding did not fully explore, however, were the details of
what data messages in his REST style looked like and how
components and connectors worked together to enable com-
munication via these messages. One line from the disser-
tation has been singled out as the only description of what
this message style might entail:

“REST is defined by four interface constraints:
identification of resources; manipulation of re-
sources through representations; self-descriptive
messages; and, hypermedia as the engine of ap-
plication state.”

4.1 Affordance-Rich Messages (ARMs)
Fielding mentioned hypermedia as the way to modify state

on a distributed network. In this he meant “the simultane-
ous presentation of information and controls such that the
information becomes the affordance through which the user
obtains choices and selects actions.”[10]

These affordances are, essentially, the pattern language
described by Alexander. They are the environmental ele-
ments of Gibsons world. Fielding’s description also tracks
very closely to that of Norman. Applications that rely not
just on rules and operations within the code (’in the head’
as Norman would say) are capable of recognizing and react-
ing to affordances in the message itself (similar to Norman’s
‘in the world’). Affordance-rich messages allow for increased
shared understanding. They represent more than raw data
passed between parties. Additional information about the
semantics associated with the data and the options available
at that moment in time are also available to the recipient.

And, as outlined by Campbell and Korzybski, sharing the
exact meaning of each and every affordance and semantic
detail is not necessary in order to share general understand-
ing. Knowledge that an in-message control “affords sending
data” or “affords filtering results” is sufficient to support a
wide range of operations. Rather than designing systems
that fail unless all the exact details in are in place, a better
approach is to design what Norman refers to as ‘explorable’
systems; ones that allow users to safely make attempts at
reaching their goals.

“Think of each action by the user as an attempt
to step in the right direction; an error is sim-
ply an action that is incompletely or improperly
specified. ... Try to support, not fight, the user’s
responses. ... Design explorable systems.”[22]

Affordance-Rich Messages (ARMs) can make it possible
to design “explorable” systems.

4.2 Programming the Network
Programming the network means focusing on the mes-

sages that are passed along the network instead of the de-
vices sending and receiving those messages. There are a
number of reasons this shift from device-orientation to network-
work orientation can benefit software architects and devel-
opers.

First, in widely distributed networks where components
have little to no view into the workings of other components
on the network, the message passed between them is the only
means “in the world” by which communication is possible.
In this light, it make sense to consider a way in which the
network itself can be ‘programmed.’ It is through messages
that both sender and recipient share understanding and the
network is where this understanding lives.

Second, programming the network is not only possible,
it is essential in order to support networks as they grow in
both the space and time dimension. Think of the possibility
of communicating with devices at great distances (i.e. in
outer space). It is reasonable to include affordances and ad-
ditional options within messages that might not reach their
recipient for minutes, hours, or even days in order to allow
the recipient to engage in additional evaluation of availble
options before making a (local) decision. As the reach of the
network grows, the messages carried by that network need
to be more rich and informative.

Finally, by adopting a paradigm where the messages con-
tain ’programming code’, the network of machines that touch
the message as it moves along to its final destination can
participate in the communication. The HTTP protocol to-
day is designed to support one level of communication at
the network level (the HTTP Header space) and one at the
sender-recipient level (the body). Manipulating the message
metadata sends signals to intermediaries along the network
path; signals devices may understand and act upon when
appropriate. This, too, is programming the network.

The network is ’programmable’ today using ARMs and
message metadata over HTTP.

4.3 A Working Model
What would a working model of a programmable network

look like? We already have all the technical tools needed
to make this a reality. What is needed is to delineate the

necessary parts of a working system and show how they can
be used to support the proposed paradigm.

The following elements of a working model for programmable
networks are described:

• ARM-Aware Network

• ARM-Capable Devices

• ARM Design Model

• ARM Evaluation Model

NOTE: While this section of the paper describes the
working model using HTTP as the protocol, ARM-style
communication is protocol-agnostic as it sits atop the trans-
fer protocol. As HTTP changes and/or new transfer pro-
tocols become available, the ARM paradigm can still be a
viable model for programming the network.

4.3.1 An ARM Network
ARMs are of benefit when network communication may

span notable distances. When these distances (either in
space or time) are long enough to be noticeable by either the
recipient or sender (i.e. messages take more than a few sec-
onds to travel between parties), enriching the message with
affordances that explain what the recipient can do adds ben-
efit. This includes allowing recipients to store (and possibly
forward) messages for later use.

HTTP request/response today has all the properties needed
to support this aspect of programmable networks. The HTTP
header space contains enough information to know whether
the message is fresh or stale, the origin of the message, etc.
HTTP responses may also include a body (the part that
holds the ARM) which recipients can parse, process, and
act upon independent of the sender who originated the mes-
sage.

A network of machines that understands HTTP can be an
ARM-Aware network.

4.3.2 ARM-Capable Devices
Currently most connected devices utilized either a generic

HTTP browser or a ‘native’ application with a built-in HTTP
library in order to communicate along the network. ARM-
Capable devices would be able to leverage available support
for a protocol (i.e. HTTP) plus one or more ARM proces-
sors. This is close to the way Web browsers work; they have
strong support for the HTTP protocol and a limited number
of affordance-rich media types (i.e. HTML). However cur-
rent browsers do not easily support adding new media-type
processors. ARM-capable devices would be able to treat
ARM processors as ‘plug-ins’ and make it easy to ‘upgrade’
a device by adding new ARM processors.

ARM-capable devices are ones that not only have strong
support for one ore more network protocols, they also have
support for multiple message models and/or can add new
message models as they become available.

4.3.3 ARM Design Model
In an environment where networks support ARM-style

communication and devices can support new ARM proces-
sors as they become available, having a clear design model
for affordance-rich messages is critical. Luckily, one already
exists: Hypetext media types or Hypermedia Types.[29]

<root>

<customer id="123">

<name>Smith, Inc.</name>

<region>South</region>

<balance>1000</balance>

</customer>

</root>

Example 1: Non-ARM Response

Media types with native hypermedia controls provide the
affordances needed to support ARM-style designs (compare
Examples 1 & 2). The author has previously identified a
candidate set of these affordances as H-Factors in the book
“REST: From Research to Practice.”[29] Additional material
on a design methodology for Hypermedia Types was detailed
in “Building Hypermedia APIs with HTML5 and Node.”[2]

<root>

<customer id="123" rel="item" href="...">

<name>Smith, Inc.</name>

<region>South</region>

<balance>1000</balance>

<link rel="edit" href="..." />

<link rel="collection" href="..." />

<link rel="search" href="..." />

</customer>

</root>

Example 2: ARM-style Response

Designing messages that carry affordances is, essentially, de-
signing a language through which clients and servers can
share understanding. Designs can be targeted (See Exam-
ple 2) or very general (See Example 3). The design style
chosen should fit the needs of the network participants and
the nature of the problem domain.

<root>

<item id="123" rel="customer" href="...">

<data name="name">Smith, Inc.</data>

<data name="region">South</data>

<data name="balance">1000</data>

<link rel="edit" href="..." />

<link rel="collection" href="..." />

<link rel="search" href="..." />

</item>

</root>

Example 3: General ARM-style Response

4.3.4 ARM Evaluation Model
Producing affordance-rich messages is only helpful if net-

work participants can“understand”and use them when they
arrive. A consistent evaluation model for ARMs is needed;
one which clients and servers can count on when attempting
to use ARM-style responses.

Donald Norman’s seven stages of action (see above) pro-
vides an likely candidate for evaluating (and acting upon)
ARM-style responses. Network participants can be coded to
perform the same general steps as humans when interacting
with the environment:

1. Identify a goal

2. Establish a set of tasks to reach that goal

3. Execute the identified task

4. Capture the results of that action

5. Evaluate the captured results

6. Compare the results to the identified goal

These steps can be applied to response messages on the
network by creating ARM processors that can identify goals,
establish, execute, and evaluate the results of tasks per-
formed to reach that goal. This is the heart of any goal-
seeking state machine. There are quite a number of possible
ways to implement ARM processors. It could be done using
a human to perform the stages directly or via automation
by relying on ‘crowd-sourcing’ logic for the establishment of
tasks and the evaluation of the results.

By treating each ARM design separately and providing
processors that understand the ARM ‘language’, connected
devices can become active participants in the programmable
network.

5. RELATED WORK
While much of the ideas in this paper have been iden-

tified previously, there are no tangible ARM-style imple-
mentations extant on the Web today. There are however,
some encouraging examples. The items mentioned here fall
short of the paradigm of ‘programming the network through
affordance-rich messages’ but they do represent attempts to
solve the same problem or mitigate similar perceived short-
comings in the current implementation models.

5.1 Web Intents
Paul Kinlan’s Web Intents[14] “is a discovery mechanism

and extremely light-weight RPC system between web apps,
modeled after the similarly-named system in Android.”While
a decidedly RPC-style approach (as opposed to the ARM-
style described in this paper), the general aim of Web In-
tents is similar. Clients are able to discover and register with
providers to handle actions using a declarative model from
within the common browser. Like the ARM-style paradigm,
client applications can ‘augment’ their ability to handle af-
fordances as they appear within responses.

5.2 ql.io
Ebay’s ql.io[25] project is a “Declarative data-retrieval

and aggregation gateway for quickly consuming HTTP APIs.”
Even though this project does not use affordances as means
to interact along the network, it does provide a similar ser-
vice to client applications; a gateway to normalize Web API
interactions. This service, like ARM-style designs makes it
possible for client applications to better utilize remote ser-
vices on the network.

5.3 Hypertext Application Language (HAL)
The HAL media type “is a lean, domain-agnostic hyper-

media type in both JSON and XML, and is designed specif-
ically for exposing RESTful hypermedia APIs” and it could
be used to craft ARM-style responses. HAL defines a small
set of hypermedia affordances (Resources and Links) and
allows designers to use Link Relations[17] to add semantic

meaning to the representations. In this way, HAL represents
a tangible example of a message design aimed at increasing
the reliance on affordances used in network communication.

6. CONCLUSION
Moving from an object-oriented API paradigm to a network-

oriented affordance paradigm allows software architects and
developers to begin programming the network using affordance-
rich messages (ARMs) instead of using traditional functional
APIs to program the devices connected to the network. This
requires a working model where 1) the network is able to
support ARM-style responses (which HTTP does today), 2)
connected devices understand not just the transfer proto-
cols in use (HTTP, FTP, IRC, etc.) but also the ARMs
being transferred, 3) message designs that allow developers
to successfully map actions to affordances, and 4) a mes-
sage evaluation model that follows Norman’s seven stages of
action.

While the current Web can support this paradigm, there
are only faint examples of this model emerging at this time
(i.e. Web Intents, ql.io, HAL, etc.). What is needed at this
time is an increased focus on coding clients that can support
ARM evaluation and a parallel increase of new ARM-style
implementations and message designs.

7. REFERENCES
[1] Alexander, Christopher. In A Timeless Way of

Building, Oxford University Press, New York, NY
USA, 1979

[2] Amundsen, Mike Building Hypermedia APIs with
HTML5 and Node O‘Reilly Media, CA USA 2011

[3] Appcelerator http://www.appcelerator.com/

[4] Beck, Kent and Cunningham, Ward. Using Pattern
Languages for Object-Oriented Programs Presented at
OOPSLA-87, September 1987
http://c2.com/doc/oopsla87.html

[5] Campbell, Joseph. The hero with a Thousand Faces
Pantheon Books, USA 1949

[6] Christensen, Erik, et al. Web Services Description
Language (WSDL) 1.1 W3C Note, March 2001
http://www.w3.org/TR/wsdl

[7] Davis, Doug, VP of the Digital Enterprise Group and
general manager of the Embedded and
Communications Group at Intel. In Intel Inside
Becomes Intel Everywhere, Mar 2, 2009
http://g.mamund.com/nxmnj

[8] Fielding, Roy T. Architectural Styles and the Design of
Network-based Software Architectures Ph.d
dissertation, University of California, Irvine, 2000.
http://roy.gbiv.com/pubs/dissertation/top.htm

[9] Fielding, Roy talking to Richard Morris. In Roy
Fielding: Geek of the Week, August 2010
http://g.mamund.com/dozcf

[10] Fielding, Roy T. In the presentation A Little REST
and Relaxation for ApacheCon 2008, November 2008.
http://g.mamund.com/hfgdl

[11] Gibson, James J. The Ecological Approach to Visual
Perception Psychology Press, New Yorik NY USA,
1986

[12] Golberg and Reuben. Smalltalk-80: the language and
its implementation Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA 1983

[13] Grossman, Lev, Time Magazine. In Apple’s New
Calling: The iPhone, January 10, 2007.
http://g.mamund.com/qgkxr

[14] Kinlan, Paul On Github http://g.mamund.com/hanql

[15] Korzybski, Alfred. Science and Sanity Colonial Press
Inc., Clinton, MA USA 1933

[16] Hadley, Mark. Web Application Description Language
W3C Member Submission, August 2009
http://www.w3.org/Submission/wadl/

[17] IANA Link Relations http://g.mamund.com/jewho

[18]

[19] Mandel, Dr. Michael, South Mountain Economics,
LLC. In Where are the Jobs: The App Economy
Whitepaper, February 7, 2012

[20] Microsoft Software Developer Network Using HTTP
as an RPC Transport, September 2011
http://g.mamund.com/vxsoc

[21] Murray, Bill as Dr. Peter Venkman In Ghostbusters.
Dir. Ivan Reitman. Columbia Pictures Corporation,
1984.

[22] Norman, Donald. The Design of Everyday Things
Basic Books, September 2002

[23] PhoneGap http://phonegap.com/

[24] Programmable Web, The In4,000 Web APIs: What’s
Hot and What’s Next?, October 3, 2011.
http://g.mamund.com/qspml

[25] QL.IO A Declarative data-retrieval and aggregation
gateway for quickly consuming HTTP APIs
http://ql.io

[26] Shogren, Elizabeth for NPR. Don’t Trash Or Stash
Old Cell Phones; Recycle Them, April 2010.
http://g.mamund.com/yqeuz

[27] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., J. E. Robbins, K. A. Nies, P. Oreizy,
and D. L. Dubrow. A Component- and Message-Based
Architectural Style for GUI Software IN Transactions
on Software Engineering, pages 390- 406, June 1996.

[28] Tyagi, Sameer for Oracle Technology Network.
RESTful Web Services August 2006
http://g.mamund.com/cxkow
Vestberg, Hans President and CEO of Ericsson. In
CEO to shareholders: 50 billion connections 2020
Press Release, April 13, 2010
http://g.mamund.com/zkjww

[29] Wilde, Erik Pautasso, Cesare, Eds. Chapter 4:
Hypermedia Types in REST: From Research to
Practice Springer; 1st Edition. edition August 2011

